Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex.
نویسندگان
چکیده
Neuronal orientation selectivity has been shown in animal models to require corticocortical network cooperation and to be dependent on the presence of GABAergic inhibition. However, it is not known whether variability in these fundamental neurophysiological parameters leads to variability in behavioral performance. Here, using a combination of magnetic resonance spectroscopy, magnetoencephalography, and visual psychophysics, we show that individual performance on a visual orientation discrimination task is correlated with both the resting concentration of GABA and the frequency of stimulus-induced gamma oscillations in human visual cortex. Behaviorally, a strong oblique effect was found, with the mean angular threshold for oblique discrimination being five times higher than that for vertically oriented stimuli. Similarly, we found an oblique effect for the dependency of performance on neurophysiological parameters. Orientation detection thresholds were significantly negatively correlated with visual cortex GABA concentration for obliquely oriented patterns (r = -0.65, p < 0.015) but did not reach significance for vertically oriented stimuli (r = -0.39, p = 0.2). Similarly, thresholds for obliquely oriented stimuli were negatively correlated with gamma oscillation frequency (r = -0.65, p < 0.017), but thresholds for vertical orientations were not (r = -0.02, p = 0.9). Gamma oscillation frequency was positively correlated with GABA concentration in primary visual cortex (r = 0.67, p < 0.013). These results confirm the importance of GABAergic inhibition in orientation selectivity and demonstrate, for the first time, that interindividual performance on a simple visual task is linked to neurotransmitter concentration. The results also suggest a key role for GABAergic gamma oscillations in visual discrimination tasks.
منابع مشابه
Regionally specific human GABA concentration correlates with tactile discrimination thresholds.
The neural mechanisms underlying variability in human sensory perception remain incompletely understood. In particular, few studies have attempted to investigate the relationship between in vivo measurements of neurochemistry and individuals' behavioral performance. Our previous work found a relationship between GABA concentration in the visual cortex and orientation discrimination thresholds (...
متن کاملResting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans.
Functional imaging of the human brain is an increasingly important technique for clinical and cognitive neuroscience research, with functional MRI (fMRI) of the blood oxygen level-dependent (BOLD) response and electroencephalography or magnetoencephalography (MEG) recordings of neural oscillations being 2 of the most popular approaches. However, the neural and physiological mechanisms that gene...
متن کاملGamma oscillations in V1 are correlated with GABAA receptor density: A multi-modal MEG and Flumazenil-PET study
High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic ...
متن کاملGABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.
The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical G...
متن کاملRelating MEG measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration
The human motor cortex exhibits characteristic beta (15-30 Hz) and gamma oscillations (60-90 Hz), typically observed in the context of transient finger movement tasks. The functional significance of these oscillations, such as post-movement beta rebound (PMBR) and movement-related gamma synchrony (MRGS) remains unclear. Considerable animal and human non-invasive studies, however, suggest that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 50 شماره
صفحات -
تاریخ انتشار 2009